Recall from the notes:
\nLet
$$
g_i
$$
 be continuous on I.
\nLet g_i be a solution to
\n
$$
g'' + g_i(x)g' + g_o(x)g = 0
$$
\n
$$
g'' + g_i(x)g' + g_o(x)g = 0
$$
\n
$$
g_1
$$
\nThen,
\n
$$
g_2 = g_1 \cdot \int \frac{e^{-\int g_i(x)dx}}{g_i^2} dx
$$
\nwill be another solution that is
\nlinearly independent with g_1 .

0(a)	We are given that $y_1 = x^4$ is a solution to
$x^2y'' - 7xy' + 16y = 0$	
00. $\Gamma = (0, \infty)$.	
Note that $y_1 = x^4 \neq 0$ on $\Gamma = (0, \infty)$.	
Divide by x^2 to get the equation	
$y'' - \frac{7}{x}y' + \frac{16}{x^2}y = 0$	
$a_1(x) = -\frac{7}{x}$	
Using our formula from class we get	
$y_2 = y_1 \cdot \int \frac{e^{-\int a_1(x)dx}}{y_1^2} dx$	
$= x^4 \int \frac{e^{-\int \frac{-1}{x}dx}}{(x^4)^2} dx$	

$$
= x^4 \int \frac{e^{7 \int \frac{1}{x} dx}}{x^8} dx
$$

$$
x^{4} \int \frac{e^{-\frac{1}{2}h|x|}}{x^{8}} dx
$$
\n
$$
= x^{4} \int \frac{e^{-\frac{1}{2}h(x)}}{x^{8}} dx
$$
\n
$$
= x^{4} \int \frac{x^{3}}{x^{8}} dx
$$
\n
$$
= x^{4} \int \frac{x^{3}}{x^{8}} dx
$$
\n
$$
= x^{4} \int \frac{1}{x} dx
$$
\n
$$
= x^{4} \int \frac{1}{x} dx
$$
\n
$$
= x^{4} \int h(x) dx
$$
\n
$$
= x^{4} \int h(x) dx
$$
\n
$$
= x^{4} \int \frac{1}{x^{4}} dx
$$
\n
$$
= x^{4} \int h(x) dx
$$
\n
$$
= x^{4} \int \frac{1}{x^{4}} dx
$$
\n
$$
= x^{4} \int h(x) dx
$$
\n
$$
= x^{4} \int \frac{1}{x^{4}} dx
$$
\n<math display="block</math>

①(b)	We are given that $y_1 = x^2$ is a solution to $x^2y'' + 2xy' - 6y = 0$
00. $\mathbb{I} = (0, \infty)$.	
Note that $y_1 = x^2 \neq 0$ on $\mathbb{I} = (0, \infty)$.	
Divide by x^2 to get the equation $y'' + \frac{2}{x}$ $y' - \frac{6}{x^2}$ $y = 0$	
Divide by x^2 to get $\frac{2}{x}$	
Using our formula from class we get $y_2 = y_1 \cdot \int \frac{e^{-\int a_1(x)dx}}{y_1^2} dx$	
$= x^2 \int \frac{e^{-\int \frac{2}{x} dx}}{(x^2)^2} dx$	
$= x^2 \int \frac{-2 \int \frac{1}{x} dx}{x^4} dx$	

$$
= x^{2} \int \frac{e^{-2\ln|x|}}{x^{4}} dx
$$
\n
$$
= x^{2} \int \frac{e^{-2\ln(x)}}{x^{4}} dx
$$
\n
$$
= x^{2} \int \frac{e^{-2\ln(x)}}{x^{4}} dx
$$
\n
$$
= x^{2} \int \frac{e^{-2\ln(x)}}{x^{4}} dx
$$
\n
$$
= x^{2} \int \frac{e^{\ln(x^{2})}}{x^{4}} dx
$$
\n
$$
= x^{2} \int \frac{x^{4}}{x^{4}} dx
$$
\n
$$
= x^{2} \int \frac{x^{2}}{x^{4}} dx
$$
\n
$$
= \frac{e^{2} \cdot x}{x^{2} \cdot 4} dx
$$
\n
$$
= \frac{e^{2} \cdot x^{2}}{x^{4}} dx
$$
\n<math display="block</math>

①(c)	We are given that	y ₁ = $ln(x)$ is a solution to
$xy'' + y' = 0$		
00. $\mathcal{I} = (0, \infty)$.		
Note that	$y_1 = ln(x) \neq 0$	0. $\mathcal{I} = (0, \infty)$.
Divide by x to get the equation		
$y'' + \frac{1}{x}y' = 0$		
$q_1 = \frac{1}{x}$		

Using our formula from class we get
\n
$$
y_2 = y_1 \cdot \int \frac{e^{-\int a_1(x)dx}}{y_1^2} dx
$$
\n
$$
= ln(x) \int \frac{e^{-\int \frac{1}{x} dx}}{(\ln(x))^2} dx
$$
\n
$$
= ln(x) \int \frac{-ln(x)}{(\ln(x))^2} dx
$$
\n
$$
= ln(x) \int \frac{e^{-ln(x)}}{(\ln(x))^2} dx
$$
\n
$$
x \text{ is in}
$$

$$
= ln(x) \int \frac{ln(x)}{(\ln(x))^{2}} dx \Leftrightarrow \int \frac{ln(z)}{(\ln(x))^{2}} dx
$$

$$
= ln(x) \int \frac{ln(x^{1})}{(\ln(x))^{2}} dx \Leftrightarrow \int \frac{ln(B) = ln(B^{A})}{\ln(B) = ln(B^{A})}
$$

$$
= ln(x) \int \frac{x^{1}}{(\ln(x))^{2}} dx \Leftrightarrow \int \frac{ln(z)}{z^{2}} = z
$$

$$
= \ln(x) \int \frac{1}{x (\ln(x))^{2}} dx
$$
\n
$$
= \ln(x) \int \frac{1}{x (\ln(x))^{2}} dx
$$
\n
$$
= \int \frac{1}{u^{2}} du = \int u^{2} du
$$
\n
$$
= \int \frac{1}{u^{2}} du = \int u^{2} du
$$
\n
$$
= \int \frac{1}{u^{2}} du = \int u^{2} du
$$
\n
$$
= \int \frac{1}{u^{2}} du = \int u^{2} du
$$
\n
$$
= \int \frac{1}{u^{2}} du = \int u^{2} du
$$
\n
$$
= \int \frac{1}{u^{2}} du = \int u^{2} du
$$

Thus,
$$
y_1 = x^4
$$
 and $y_2 = -1$ are two linearly
\nindex of solutions to $xy'' + y' = 0$
\n $0 \times 1 = (0, \infty)$. And the general solution to
\n $xy'' + y' = 0$ on $\pm = (0, \infty)$ is of the
\nfrom $y = c_1 y_1 + c_2 y_2 = c_1 h(x) + c_2(-1)$

0(d)	We are given that $y_i = x^{1/2}ln(x)$ is a solution to $y_i^2 + y_i = 0$	
00. $T = (0, \infty)$.	$y_2 = \frac{1}{2} \ln(x) + 0$	00. $T = (0, \infty)$.
01. $T = (0, \infty)$.	$y_2 = \frac{1}{2} \ln(x) + 0$	01. $T = (0, \infty)$.
02. $T = (0, \infty)$.	03. $T = (0, \infty)$.	
04. $T = (0, \infty)$.		
05. $T = (0, \infty)$.	06. $T = (0, \infty)$.	
06. $T = (0, \infty)$.	07. $T = (0, \infty)$.	
08. $T = (0, \infty)$.	08. $T = (0, \infty)$.	
09. $T = (0, \infty)$.	01. $T = (0, \infty)$.	
01. $T = (0, \infty)$.	02. $T = (0, \infty)$.	
03. $T = (0, \infty)$.	04. $T = (0, \infty)$.	
04. $T = (0, \infty)$.	05. $T = (0, \infty)$.	
05. $T = (0, \infty)$.	06. $T = (0, \infty)$.	
06. $T = (0, \infty)$.	07. $T = (0, \infty)$.	
07. $T = (0, \infty)$.	08. <math< td=""></math<>	

$$
= x^{\frac{1}{2}} \ln(x) \int \frac{dx}{x(\ln(x))^{2}} dx = \int \frac{1}{u^{2}} du = \int u^{2} du
$$

$$
= \int \frac{1}{u^{2}} du = \int u^{2} du
$$

$$
= \int \frac{1}{u^{2}} du = \int u^{2} du
$$

$$
= \int \frac{1}{u^{2}} du = \int u^{2} du
$$

$$
=-\times
$$
^{1/2}

Thus,
$$
y_1 = x^{1/2}ln(x)
$$
 and $y_2 = -x^{1/2}$ are two linearly
\nindex $ln(x)$ and $y_2 = -x^{1/2}$ are two linearly
\nindex $ln(x)$ and $ln(x)$ and $ln(x)$ is $ln(x)$ to x^{2}
\n $ln(x)$ and $x^{2}y'' + y = 0$ on $T = (0, \infty)$ is $ln(x) + c_2(-x^{1/2})$
\n $ln(m, y) = c_1y_1 + c_2y_2 = c_1x^{1/2}ln(x) + c_2(-x^{1/2})$

One)	We are given that $y_i = x^{-4}$ is a solution to
$x^2 y'' - 20y = 0$	
On $\mathbb{I} = (0, \infty)$.	
Note by x^2 to get the equation	
Divide by x^2 to get the equation	
$y'' - \frac{z^0}{x^{-4}} y = 0$	
Using our formula from class we get	
Using our formula from class we get	
$y_2 = y_1 \cdot \int \frac{e^{-\int a_1(x)dx}}{y_1^2} dx$	
$= x^4 \int \frac{e^{-\int 0 dx}{(x^4)^2} dx}{(x^4)^2} dx$	
$= x^4 \int \frac{e^0}{(x^4)^2} dx$	
$= x^4 \int \frac{e^0}{(x^4)^2} dx$	

$$
=\frac{1}{x}y^{2}
$$
\n
$$
=\frac{1}{x}y^{2}
$$
\n
$$
=\frac{1}{x}x^{3}
$$
\n
$$
=\frac{1}{x}x^{5}
$$
\n
$$
= \frac{1}{x}x^{5}
$$

Thus,
$$
y_1 = x^{-4}
$$
 and $y_2 = \frac{1}{9} \times 5$ are two linearly
\nindex of solutions, $y_1 = x^{-4}$ and $y_2 = \frac{1}{9} \times 5$ are two linearly
\nindex $3 \times 3 = 0$, so. And the general solution to
\n $x^2 y'' - 20y = 0$ on $T = (0, \infty)$ is of the
\nfrom $y = c_1 y_1 + c_2 y_2 = c_1 x + c_2 (\frac{1}{9} x^5)$

$$
\boxed{0(1)}
$$
 We are given that $y_i = e^x$ is a solution to
\n $x y'' - (x+1) y' + y = 0$
\n $y'' - (x+1) y' + y = 0$
\n $y_0 = 1 = (0, \infty)$.
\nNote that $y_i = e^x + 0$ on $I = (0, \infty)$.
\nDivide by x the get the equation
\n
$$
y'' - \frac{x+1}{x} y' + \frac{1}{x} y = 0
$$
\n
$$
y'' - \frac{x+1}{x} y' + \frac{1}{x} y = 0
$$
\n
$$
y_{1,0}(x) = -\frac{x+1}{x}
$$
\nUsing our formula from class we get
\n
$$
y_2 = y_1 \cdot \int \frac{e^{-\int a_1(x)dx}}{y_1^2} dx
$$
\n
$$
= e^x \int \frac{e^{-\int \frac{x+1}{x}dx}}{(e^x)^2} dx
$$
\n
$$
= e^x \int \frac{g(1+x)^{dx}}{e^{2x}} dx
$$

$$
= -x e^{x-x} - e^{x-x}
$$

$$
= -x e^{x-x} - e^{x-x}
$$

$$
= -x e^{x-x} - e^{x-x}
$$

$$
= -x - 1
$$

Thus,
$$
y_1 = e^x
$$
 and $y_2 = -x-1$ are two linearly
\nindex product solutions to $xy''-(x+1)y'+y=0$
\non $x = (0, \infty)$. And the general solution to
\n $xy''-(x+1)y'+y=0$ on $x=(0,\infty)$ is of the
\nfrom $y=0, y_1 + 0, y_2 = c_1e^x + c_2(-x-1)$

(a) We are given that
$$
y_1 = x^2
$$
 and $y_2 = x^3$
are linearly independent solutions to
 $x^2y'' - 4xy' + 6y = 0$
on $I = (0, \omega)$

(a) Let's find a particular solution to $x^2y'' - 4xy' + 6y = \frac{1}{x}$

 $(\infty, \infty) = I$ f_{D} cm: First divide by x^2 to get into standard 」
<u>\</u> $y'' - \frac{4}{x}y' + \frac{6}{x}y =$ - \times^3 $\overline{b(x)}$ Then 3 $\overline{\mathsf{X}}$ $W(y,y)$ $\begin{pmatrix} x^2 & x^3 \\ 2x & 3x^2 \end{pmatrix}$ $= 3x^{4} - 2x^{4}$ \mathcal{A} $= x$

Let

$$
V_{1} = -\int \frac{y_{2} \cdot b(x)}{w(y_{1}, y_{2})} = -\int \frac{x^{3} \cdot \frac{1}{x^{3}}}{x^{4}} dx
$$

$$
= -\int x^{-4} dx = -\frac{x^{-3}}{-3} = \frac{1}{3}x^{-3}
$$

$$
V_2 = \int \frac{y_1 \cdot b(x)}{w(y_1, y_2)} = \int \frac{x^2 \cdot \frac{1}{x^3}}{x^4} dx
$$

=
$$
\int \frac{1}{x^5} dx
$$

$$
=\int x^{-5} dx
$$

$$
=\frac{x}{-y}
$$

$$
=-\frac{1}{y}x^{-y}
$$

Thus, a particular solution to
\n
$$
x^2y''-4xy'+6y=\frac{1}{x}
$$

\n $0x \pm 2(y) \approx 1$

$$
Y_{\beta} = V_{1}Y_{1} + V_{2}Y_{2}
$$

= $\frac{1}{3} \times \frac{-3}{3} \times \frac{2}{3} - \frac{1}{4} \times \frac{-4}{3} \times \frac{3}{3} = \frac{1}{3} \times \frac{-1}{4} - \frac{1}{4} \times \frac{-1}{1}$

$$
= \frac{1}{12} \times^{-1}
$$

(b) The general solution to
\n
$$
x^{2}y'' - 4xy' + 6y = \frac{1}{x}
$$

\n $0 \times 1 = (0, \infty)$ is
\n $y = y_{h} + y_{e} = 4x^{2} + 4x + 4 = 4$

9. We are given that
$$
y_i = x
$$
 and $y_2 = x \ln(x)$

\nare linearly independent solutions to

\n
$$
x^2 y'' - xy' + y = 0
$$
\nOn $\mathcal{I} = (0, \infty)$

\n(a) Let's find a particular solution to

\n
$$
x^2 y'' - xy' + y = 4 \times \ln(x)
$$
\nOn $\mathcal{I} = (0, \infty)$

\nFirst divide by x^2 by get into standard for

(a) Let's find ^a particular solution to x^2 $y'' - xy' + y = 4xln(x)$ $(\omega, \omega) = I - \omega_0$ First divide by x^2 to get into standard form: $4ln(x)$ $y'' (y, \infty)$

(vide by x^2 to yet into
 $\frac{1}{x}y' + \frac{1}{x^2}y = \frac{4}{x}ln(x)$
 $log(x)$ $\overline{b(x)}$ Then $1 \times x^{\ln(x)}$ $W(y_1, y_2) = \begin{vmatrix} x & 1 \\ 1 & 1 \end{vmatrix}$ $= x(x(x) + x - x(x(x)))$ $=$ \times

Let
\n
$$
V_{1} = -\int \frac{y_{2} \cdot b(x)}{w(y_{1}, y_{2})} = -\int \frac{x \ln(x) \cdot \frac{u}{x} \ln(x)}{x} dx
$$
\n
$$
= -\frac{u}{3} \left(\ln(x) \right)^{3}
$$
\n
$$
= -\frac{u}{3} \left(\ln(x) \right)^{3}
$$
\n
$$
= \frac{u^{3}}{3}
$$
\n
$$
= \frac{(h(x))^{3}}{3}
$$
\n
$$
= \frac{(h(x))^{3}}{3}
$$

And

$$
V_{2} = \int \frac{y_{1} \cdot b(x)}{w(y_{1}, y_{2})} = \int \frac{x \frac{4}{x} \ln(x)}{x} dx
$$

= $\sqrt{\frac{\ln(x)}{x}} dx$ $\left(\frac{\ln(x)}{x}\right)^{2} dx$
= $\sqrt{\frac{\ln(x)}{x}} dx$
= $\sqrt{\frac{\ln(x)}{x}} dx$
= $\int \frac{\ln(x)}{x} dx$
= $\int u du$
= $\frac{1}{2} (ln(x))^{2}$
= $\frac{1}{2} (ln(x))^{2}$

Thus, a particular solution to
\n
$$
x^2 y''-xy'+y=4xln(x)
$$

\non $I=(0,10)$ is

$$
y_{p} = V_{1}y_{1} + V_{2}y_{2}
$$

= $-\frac{4}{3} (ln(x))^{3} \cdot x + 2 (ln(x))^{2} \cdot x ln(x)$
= $\frac{2}{3} \times (ln(x))^{3}$

Thus, a particular solution to
\n
$$
x^{2}y''-xy'+y=4xln(x)
$$

\non $\mathcal{I}=(0, x)$ is
\n $y_{p} = V_{1}y_{1} + V_{2}y_{2}$
\n $= -\frac{4}{3} (ln(x))^{3} \cdot x + 2(ln(x))^{2} \cdot xln(x)$
\n $= \frac{2}{3} \times (ln(x))^{3}$
\n(b) The general solution to
\n $x^{2}y'' - xy' + y = 4xln(x)$
\nor $\mathcal{I}=(0, x^{3})$ is
\n $y = y_{h} + y_{p} = C_{1}x + C_{2}xln(x) + \frac{2}{3}x(ln(x))^{3}$